Riemann sums for MCMC estimation and convergence monitoring

نویسندگان

  • Anne Philippe
  • Christian P. Robert
چکیده

This paper develops an extension of the Riemann sum techniques of Philippe (1997b) in the setup of MCMC algorithms. It shows that the technique applies equally well to the output of these algorithms, with similar speeds of convergence which improve upon the regular estimator. The restriction on the dimension associated with Riemann sums can furthermore be overcome by RaooBlackwellization methods. This approach can also be used as a control variate technique in convergence assessment of MCMC algorithms, either by comparing the values of alternative versions of Riemann sums, which estimate a same quantity, or by using genuine control variate, that is, functions with know expectations, which are available in full generality for constants and scores. The authors are grateful to Steve Brooks for helpful discussions about the score method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convergence rates of approximate sums of Riemann integrals

The Riemann sums and the trapezoidal sums of functions defined on a bounded closed interval are well known as approximate sums of the Riemann integrals of the functions. In this paper the author represents the convergence rates of the Riemann sums and the trapezoidal sums as some limits of their expanded error terms. Let [a, b] be a bounded closed interval. We take an n-division ∆ of [a, b] def...

متن کامل

A Note on the Convergence of Random Riemann and Riemann-Stieltjes Sums to the Integral

Convergence in probability of random Riemann sums of a Lebesgue integrable function on [0, 1) to the integral has been proved. In this article we generalize the result to an abstract probability space under some natural conditions and we show L1convergence rather than convergence in probability..

متن کامل

Complete Convergence and Some Maximal Inequalities for Weighted Sums of Random Variables

Let  be a sequence of arbitrary random variables with  and , for every  and  be an array of real numbers. We will obtain two maximal inequalities for partial sums and weighted sums of random variables and also, we will prove complete convergence for weighted sums , under some conditions on  and sequence .

متن کامل

On the Complete Convergence ofWeighted Sums for Dependent Random Variables

We study the limiting behavior of weighted sums for negatively associated (NA) random variables. We extend results in Wu (1999) and a theorem in Chow and Lai (1973) for NA random variables.

متن کامل

THE ALMOST SURE CONVERGENCE OF WEIGHTED SUMS OF NEGATIVELY DEPENDENT RANDOM VARIABLES

In this paper we study the almost universal convergence of weighted sums for sequence {x ,n } of negatively dependent (ND) uniformly bounded random variables, where a, k21 is an may of nonnegative real numbers such that 0(k ) for every ?> 0 and E|x | F | =0 , F = ?(X ,…, X ) for every n>l.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Statistics and Computing

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2001